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A key challenge for the visual system entails the
extraction of constant properties of objects from
sensory information that varies moment by moment due
to changes in viewing conditions. Although successful
performance in constancy tasks requires cooperation
between perception and working memory, the function
of the memory system has been under-represented in
recent material perception literature. Here, we
addressed the limits of material constancy by elucidating
if and how working memory is involved in constancy
tasks by using a variety of material stimuli, such as
metals, glass, and translucent objects. We conducted
experiments with a simultaneous and a successive
matching-to-sample paradigm in which participants
matched the perceived material properties of objects
with or without a temporal delay under varying
illumination contexts. The current study combined a
detailed analysis of matching errors, data on the strategy
use obtained via a self-report questionnaire, and the
statistical image analysis of diagnostic image cues used
for material discrimination. We found a comparable
material constancy between simultaneous and
successive matching conditions, and it was suggested
that, in both matching conditions, participants used
similar information processing strategies for the
discrimination of materials. The study provides
converging evidence on the critical role of working
memory in material constancy, where working memory
serves as a shared processing bottleneck that constrains
both simultaneous and successive material constancy.

Material constancy in perception
and working memory

To illustrate the appearance of objects or goods
seen around us, we commonly use descriptions, such

as glossiness, roughness, or transparency. Recently,
perception and recognition of material properties
or, more broadly, “shitsukan” (the sense of quality;
Komatsu & Goda, 2018) is gaining increased interest
in vision science. Although our understanding of
material perception is advancing (see Fleming, 2017;
Komatsu & Goda, 2018; Schmid & Doerschner, 2019
for recent reviews), it remains a challenging domain.
The visual system must detect specific visual features
that are diagnostic of particular materials (Fleming,
2014) to achieve perceptual stability, or constancy, in
response to changes in viewing conditions. However, the
degree of constancy varies depending on illumination,
object shape, and viewing angle (e.g. see Chadwick
& Kentridge, 2015 for a review of gloss constancy).
How the human brain accomplishes (and sometimes
fails in) material constancy remains a subject of debate
that primarily focuses on the mechanism by which the
visual system extracts perceptual properties of material
information from low and mid-level image features
(Anderson, 2020; Nishida, 2019). In contrast, the role
of working memory in material constancy has so far
been rarely investigated.

Successful performance in constancy tasks requires
cooperation between perceptual and memory systems.
For example, an individual engaging in foraging
activity, and searches for food of superior quality (e.g.
freshness or maturity) must compare items currently in
view with items in memory, previously viewed, while
also discounting differences in viewing conditions (e.g.
variations in illumination). The involvement of working
memory can be an influential source of error in such
tasks because of the severe capacity limit (Luck &
Vogel, 1997), susceptibility to viewing contexts (Allred
& Flombaum, 2014), and stimulus-specific matching
biases (Bae, Olkkonen, Allred, & Flombaum, 2015). We
know little about the function of working memory in

Citation: Tsuda, H., Fujimichi,M., Yokoyama,M., & Saiki, J. (2020).Material constancy in perception andworkingmemory. Journal
of Vision, 20(10):10, 1–16, https://doi.org/10.1167/jov.20.10.10.

https://doi.org/10.1167/jov.20.10.10 Received March 27, 2020; published October 6, 2020 ISSN 1534-7362 Copyright 2020 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Downloaded from jov.arvojournals.org on 10/08/2020

mailto:tsuda16k@gmail.com
mailto:fujimichi@cv.jinkan.kyoto-u.ac.jp
mailto:yokoyama.mikuho.28n@st.kyoto-u.ac.jp
mailto:saiki.jun.8e@kyoto-u.ac.jp
https://doi.org/10.1167/jov.20.10.10
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2020) 20(10):10, 1–16 Tsuda, Fujimichi, Yokoyama, & Saiki 2

constancy tasks because less attention has been focused
on the role of working memory in material perception
literature (but see a small number of studies that have
considered the role of memory in color constancy tasks;
Allred & Olkkonen, 2015; Jin & Shevell, 1996; Ling
& Hurlbert, 2008; Uchikawa, Kuriki, & Tone, 1998).
Recently, Tsuda & Saiki (2018) examined glossiness
constancy against changes in illumination with a
simultaneous (undelayed) and a successive (delayed)
matching paradigms. They discovered that changes in
the illumination context did not impair the precision
of delayed matching that was evaluated by taking into
account the perceptual baseline performance. This study
suggests that glossiness information can be robustly
recalled from working memory in the face of changes in
the illumination context between study and test periods.
Our motivation in the current research is to establish
the role of working memory in material constancy in
more detail; to this end, we use a more comprehensive
range of materials and viewing conditions.

An obstacle in constructing experiments with several
types of material dimension involves the difficulty
in creating a large and standardized set of images
due to a lack of technical expertise, computational
resource, or rendering time. Recently, Sawayama and
colleagues introduced a standard set of images for
material recognition research (Sawayama, Dobashi,
Okabe, Hosokawa, Koumura, Saarela, Olkkonen, &
Nishida, 2019). This dataset contains images (computer
graphics renderings) of a variety of materials with
variations in conditions involving illumination context
and object shape. The current study adopts a part of
the image set. From six material dimensions recorded in
the dataset, we selected three of them as experimental
stimuli: (1) metallic silver versus glass dimension; (2)
metallic gold versus plastic yellow dimension; and (3)
opaque versus translucent dimension. The remaining
dimensions in the dataset are related to glossiness and
roughness; we did not include these material dimensions
because working memory for glossiness and roughness
has been investigated in our previous study (Tsuda &
Saiki, 2018). A number of studies have investigated
metal/glass perception (Kim & Marlow, 2016; Tamura
et al., 2019; Todd & Norman, 2019), gold/yellow
perception (Matsumoto, Fukuda, & Uchikawa, 2016;
Okazawa, Koida, & Komatsu, 2011; Yang, Kanazawa,
& Yamaguchi, 2013), and translucency perception
(Chadwick et al., 2018; Fleming & Bülthoff, 2005;
Gkioulekas et al., 2013; Motoyoshi, 2010; Nagai et al.,
2013; Xiao et al., 2014). These material properties are
conceptually distinct from each other, and the visual
system would be using different types of image cues
to recognize them. By using these diverse types of
materials, we can conduct a broader test of material
constancy under the same experimental paradigm.

The current study was designed to investigate
whether, and how, simultaneous and successive material

constancy varies in terms of matching performance
and underlying information processing strategy in
order to characterize the role of working memory
in material constancy. Previous studies have shown
that changes in illumination context does not impair
either working memory of glossiness (Tsuda &
Saiki, 2018) or long-term memory of surface color
(Allred & Olkkonen, 2015), suggesting that successive
material constancy can be well achieved, at least
for some types of material dimension. Cognitive
neuroscience research has shown that the same systems
and representations that are engaged in perception
are also recruited for the short-term retention of the
sensory information (D’Esposito & Postle, 2015; Postle,
2016), and some researchers have proposed a view
that any features represented in the perceptual system
can also be maintained, at least briefly, in memory
(Christophel, Klink, Spitzer, Roelfsema, & Haynes,
2017). In light of these findings, we can expect that any
material information can be maintained in working
memory well, as long as it can be stably perceived in
corresponding viewing conditions.

However, it is also possible that performance in
successive constancy tasks is dependent on material
type. Previous research argues that material property
estimation and material categorization are distinct
aspects of material perception (Fleming, 2014;
Fleming, 2017). The perception of glossiness and
translucency involves the estimation and detailed
comparison of material properties, whereas the
recognition of silver/glass and gold/yellow is more
similar to a categorization task. If different strategies
(i.e. estimation versus categorization) are used for
the evaluation of each material type, then this should
affect how these materials are retained in memory.
For example, if material information is encoded
categorically, either by explicitly (e.g. verbal labeling) or
implicitly, then detailed visual information will be lost;
in turn, this would lead to increased errors and/or bias
in recalling it later. Therefore, successive constancy can
be less accurate than simultaneous constancy, due to
shifts in an encoding strategy that may be intrinsic to
each material type or task demands.

To address these issues, we conducted experiments
with the matching-to-sample paradigm. Participants
were presented with two sample stimuli and asked to
choose which of the two is matched by a third, which
was the test stimulus. In the simultaneous matching
condition, sample and test stimuli were displayed
together. In the successive matching condition, sample
and test stimuli were separated by masking and a
delay period of one second. In addition, two factors
were manipulated. The first factor involved the degree
of change in the illumination context. In the “same
illumination” condition, all the three objects (two
samples and a test) in a trial were rendered in an
identical illumination environment (i.e. no constancy
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is required). In the “near illumination” condition,
objects were rendered in slightly different illumination
environments (lower demand for constancy). In the
“far illumination” condition, objects were rendered
in widely different illumination environments (higher
demand for constancy). The second factor was the
discriminability of material property. That is, the
magnitude of difference in material property varied
between sample objects within a trial. Although subtle
discrimination of material property is required in the
low discriminability condition, coarse discrimination
will suffice in the high discriminability condition.

By comparing performance between simultaneous
and successive matching tasks in conditions involving
varying demands for constancy and material
discrimination, we aim to characterize the limits
of material constancy and the underlying function
of working memory. We also approached possible
differences in the information processing strategy for
material discrimination. Although estimation and
categorization would not be mutually exclusive but
complement each other in aiding material perception
(see Figure 2 in Schmidt, 2019), there is ample
evidence that categorization distorts working memory
representations of color hues (Bae, Olkkonen, Allred,
& Flombaum, 2015; Hardman et al., 2017; Persaud &
Hemmer, 2016), orientations (Bae & Luck, 2018; Pratte,
Park, Rademaker, & Tong, 2017), and spatial positions
(Huttenlocher, Hedges, & Duncan, 1991). This suggests
that a categorical encoding strategy can lead to bias
in the recall of material information. We examined
the use of strategy while performing the tasks via a
self-report questionnaire, and conducted the statistical
image analysis of diagnostic low-level image features
for material discrimination, in order to gain further
insight into the information processing strategy used in
each task condition.

To summarize, understanding the role of working
memory is key to characterizing the limits of material
constancy. We conducted matching-to-sample
experiments where each participant performed both
simultaneous and successive matching of the material
property of objects. Different material dimensions were
tested by different groups of participants: Silver-glass
(experiment 1), gold-yellow (experiment 2), and
opaque-translucent (experiment 3). We aim to elucidate
if and how the involvement of working memory will
affect performance in the material constancy task by
using behavioral data (accuracy and bias in matching),
subjective reports of task strategy, and the statistical
image analysis.

Method

We conducted three experiments. All shared the same
experimental design and procedure. However, they

differed in that different stimuli images (i.e. material
dimension) were tested for each experiment: metallic
silver versus glass (experiment 1); metallic gold versus
plastic yellow (experiment 2); and opaque versus
translucent (experiment 3).

The data and analyses scripts are available on the
Open Science Framework platform: https://osf.io/cvhtx/
(DOI:10.17605/OSF.IO/CVHTX).

Participants

Seventy-two naive undergraduate and graduate
students at Kyoto University participated in the
experiment (24 women, mean age = 19.9 years, SD
= 1.7). All participants had a normal color vision
based on the Ishihara test (Ishihara, 2004), and
had self-reported normal or corrected-to-normal
vision acuity. Twenty-four participants were assigned
to each experiment. All of them gave informed
consent and 60 were given course credit and 12 were
compensated monetarily (a book gift card of 1000
JPY). All experimental protocols were approved by the
Institutional Review Board of Kyoto University and
in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

Stimuli and apparatus

We used a subset of the standard image dataset
for material recognition research (Sawayama et al.,
2019). Of the six material dimensions recorded in the
dataset, we used (1) metallic silver versus glass, (2)
metallic gold versus plastic yellow, and (3) opaque
versus translucent dimensions (Figure 1A). Each
dimension is accompanied by five ranks of object
images that have different material properties along
that dimension (e.g. from pure silver to pure glass).
For a detailed description of the stimulus images, see
Sawayama et al. (2019). Here, we briefly describe the
image rendering procedure. The images are divided
into five ranks according to their material property.
For example, the appearance of silver-glass images is
gradually varied from pure silver to pure glass (see
Figure 1A, top). In the silver-glass and gold-yellow
dimensions, objects were rendered by blending the
bidirectional reflectance distribution function of the
two materials. In the opaque-translucent dimension,
parameters of the absorption and scattering coefficients
of the translucent medium (“whole milk” measured by
Jensen et al., 2001) were used and the scale parameter
of the scattering and absorption coefficients was varied
to control translucency. All images were rendered by
Mitsuba software (Jakob, 2010). We used three object
shapes for each material task, which are shown in the
three rows of Figure 1A. These shapes correspond to
objects 1 to 3 in Figure 2b of Sawayama et al. (2019).
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Figure 1. Stimuli and task procedure. (A) Different material dimensions were tested in each experiment. Metallic silver versus glass
(Exp. 1), metallic gold versus plastic yellow (Exp. 2), and opaque versus translucent (Exp. 3). Three object shapes were used in each
experiment. (B) Material discriminability, or the magnitude of difference in material rank of the two sample objects, was manipulated
(discriminability was either 2, 3, or 4). Possible object pairs for each discriminability condition are illustrated. (Each dot position
corresponds to each material rank in Figure 1A.) (C) A schematic depiction of a trial. On each trial, participants were presented with
two sample objects (upper two) and a test object (lower one) simultaneously (in the simultaneous matching condition) or with
masking and a delay period (successive condition). Participants were asked to choose which of the two sample stimuli was matched
by the test stimulus in terms of material property. They were required to respond in six seconds, or the next trial began. (D)
Illumination conditions. In the “same-illumination” condition, sample and test objects were rendered in an identical illumination
environment. In the “near-illumination” condition, objects were rendered in slightly different illumination environments, and in the
“far-illumination” condition, in widely different illumination environments. Note that on each panel, the sample stimulus on the right
is matched by the test stimulus.

Stimuli were displayed on a CRT monitor
(MITSUBISHI Diamondtron M2 RDF223H, 1,792 ×
1,344 pixels, 85-Hz) in a dark room at a distance of
approximately 57 cm from participants. Each image
subtended 9 degrees × 12 degrees, and the distances
between images were 15 degrees. Experiments were
controlled byMATLAB (TheMathWorks, Inc., Natick,
MA, USA) and the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997).

Procedure and design

Figure 1C depicts the stimulus sequences for the
matching-to-sample tasks. For a given trial, two
sample objects (upper two) and a test object (lower
one) were presented against a black background, and
participants were asked to choose which of the two
sample stimuli was matched by the test stimulus. In
the simultaneous matching condition, all three objects
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Figure 2. Matching performance (sensitivity and bias). (A) Sensitivity d′ in each experimental condition (material, illumination,
discriminability, and matching procedure) is shown as violin plots with mean (dots) and 95% CI (bars). (B) The proportion of response
types (correct response, under-estimation error, and over-estimation error).

were presented together. In the successive matching
condition, sample stimuli were followed by 100 ms
noise masking (phase-scrambled images of gray-scaled
sample stimuli) and a blank period of one second. In
both simultaneous and successive conditions, the next
trial began when participants made a response or six
seconds had passed after the appearance of the test
stimulus. The left/right position of the two sample
objects was counterbalanced. The test image consisted
of the identical material as the left sample in half of the
trials and identical material as the right sample in the
other half.

As briefly described in the introduction, two
factors were manipulated along with the type of
task (simultaneous/successive). The first factor
was the illumination context (Figure 1D). In the
“same-illumination” condition, sample and test objects
were rendered in an identical illumination environment;
and in the “near-illumination” condition, objects were
rendered in slightly different illumination environments,
and in the “far-illumination” condition, objects were
rendered in widely different illumination environments.
We used high-dynamic range light-probe images of
real-world scenes from Bernhard Vogl’s database
(http://dativ.at/lightprobes/) as the illuminations used
for rendering. The degree of illumination difference
was quantified by the multidimensional scaling analysis
based on the pixel histogram similarities for each
illumination probe (see Sawayama et al., 2019 for
details). Note that in the same-illumination condition,
all three objects had different poses (randomly assigned

from five pose options provided in the dataset), whereas
in the near and far illumination conditions, all objects
had the same pose (defined as 0 degrees angle in the
dataset).1 See Figure 1D for representative displays.

The second factor was material discriminability, or
the magnitude of rank-distance in material property
between two sample objects (Figure 1B). For example,
when the rank distance is two, these objects are relatively
similar to each other, and hence discriminability is
low, while when the distance is four, objects are highly
dissimilar to each other and discriminability is high.
The discriminability of the two and three conditions
involve more than one possible stimulus pair (3 and
2 options each; see Figure 1B), and a pairing option
was randomly determined in each trial.

There were two matching procedures (simulta-
neous/successive), three illumination conditions
(same/near/far), and three material discriminability
conditions (2/3/4) in each experiment (silver-glass/gold-
yellow/opaque-translucent). Each experiment took
about 1 hour to complete and was composed of
12 blocks of 36 trials each, yielding 24 trials per
combined task/illumination/discriminability condition.
The matching procedure was fixed during a block
and tested in random order; the illumination and
discriminability conditions were tested in random order
in each trial. Objects (two samples and a test) in a trial
had the same shape, which was randomly assigned on
each trial. At the beginning of each block, participants
were informed of the procedure type (simultaneous or
successive) of forthcoming trials. Before the formal
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experiment, participants familiarized themselves
with the task in a practice block. After participants
completed the experiment, but before the debriefing,
they were given a questionnaire designed to probe their
use of strategy while performing the tasks. They were
asked to write down how they performed the task in
each matching procedure (simultaneous/successive).

Results

Matching performance

Any trials with response times exceeding 6 seconds
were excluded from analysis, a total of 0.7% of all trials.
We computed the sensitivity d′ in each experimental
condition based on matching accuracy (proportion
correct). The d′ for the matching-to-sample paradigm
(ABX design; MacMillan & Creeman, 1991) was
calculated by using the “dprime.ABX” function in the
“psyphy” package (version 0.1.9; Knoblauch, 2014)
in R (version 3.6.1; R Core Team, 2016). Figure 2A
shows the distribution of d′ in each experimental
condition: the x-axis represents the value of d′ and
the y-axis represents the experimental condition
(illumination, discriminability, or task procedure). We
can see how the matching performance was affected by
the task procedure (simultaneous/successive) in each
viewing condition (illumination × discriminability)
by comparing adjacent distributions of d′ (gray and
orange). The distributions of d′ were highly overlapping
between simultaneous and successive matching
conditions in the near- and far-illumination condition,
with the exception of the same-illumination condition,
in which d′ was lower in the successive matching
condition. We conducted a 3 (material) × 2 (task) × 3
(illumination) × 3 (discriminability) repeated measures
ANOVAs with material as a between-participants
factor and task, illumination, and discriminability as
within-participants factors by using the “anovakun”
function in R (Iseki, 2019). Results indicated that all
four factors had significant main effects: material, F(2,
69) = 28.4, p < 0.0001, ηp

2 = 0.45; task, F(1, 69) =
57.2, p < 0.0001, ηp

2 = 0.45; illumination, F(2, 138) =
194.0, p < 0.0001, ηp

2 = 0.74; and discriminability, F(2,
138) = 336.0, p < 0.0001, ηp

2 = 0.83. Some factors had
significant two-way interactions: task × illumination,
F(2, 138) = 12.3, p < 0.0001, ηp

2 = 0.15; material
× illumination, F(4, 138) = 21.1, p < 0.0001, ηp

2 =
0.38; material × discriminability, F(4, 138) = 9.13, p <
0.0001, ηp

2 = 0.21, illumination × discriminability, F(4,
276) = 8.48, p < 0.0001, ηp

2 = 0.11, and a significant
three-way interaction: material × illumination ×
discriminability, F(8, 276) = 5.02, p < 0.0001,

Figure 3. Effect of task procedure on matching sensitivity.
Sensitivity d′ in successive matching conditions are plotted
against d′ in the simultaneous matching conditions.
Illumination and discriminability conditions are indicated in
color and symbol shapes, respectively. Data were pooled across
material conditions. Curves are quadratic regressions, and bars
represent 95% CI.

ηp
2 = 0.13. None of the other interactions were

statistically significant.
A multiple comparison (Shaffer’s modified

sequentially rejective Bonferroni procedure, Shaffer,
1986) revealed a large effect of task procedure in the
same-illumination condition, F(1, 69) = 52.1, p <
0.0001, ηp

2 = 0.43. However, the effect of task procedure
was small in the near-illumination condition, F(1, 69)
= 4.88, p = 0.031, ηp

2 = 0.066, and far-illumination
condition, F(1, 69) = 2.62, p = 0.11, ηp

2 = 0.037. We
plotted d′ in the successive conditions against d′ in the
simultaneous conditions to illustrate the effect of task
procedure or memory demands on matching sensitivity
(Figure 3: data were pooled over the material dimension
because the interaction between task procedure and
material dimension was nonsignificant.) As shown
above, the negative impact of memory demands on d′
was evident in the same-illumination condition, but not
in near- and far-illumination conditions. Data points
in near- and far-illumination conditions were widely
spread around the diagonal line, which suggests that
observers were able to perform successive matching as
accurately as simultaneous matching regardless of task
difficulty in each viewing condition.

End point effect

When the material discriminability was two, one of
the two samples could be picked from material ends
(ranks 1 or 5). (As can be seen in Figure 1B, one of
the two samples was always from ranks 1 or 5 when
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discriminability was 3 or 4.) Matching might have been
easier in trials that contained end point objects because
end point objects could be easily classified or labeled
as silver, glass, or gold, among others. In contrast, the
ranks in the middle appear more ambiguous regarding
their material category. We conducted an exploratory
analysis of the effect of the presence or absence of
endpoints on matching performance in order to test
for the possible effect of categorization on material
matching. Trials were split into endpoint-absent trials
(a sample pair included ranks 2 and 4, which was 33%
of all trials) and end point-present trials (a sample pair
included ranks 1 and 3 or 3 and 5, which were 64%
of all trials). Results indicated that the mean d′ was
higher in the endpoint-absent trial (4.6) compared to
the end point-present trial (2.8), t = -8.96, p < 0.0001,
which was independent of the material dimension and
task procedure. An ANOVA indicated a nonsignificant
interaction between the factors: material × end point,
F(2, 69) = 1.99, p = 0.14, ηp

2 = 0.054; task × end
point, F(1, 69) = 0.027, p = 0.87, ηp

2 = 0.0004. We have
further discussed one possible explanation of higher
performance in the end point-absent trial in the general
discussion section.

Bias in errors

To further characterize the source of error in
matching tasks, we identified two types of errors:
underestimation and overestimation. Underestimation
occurred when participants chose the wrong option
(one of the sample stimuli) that had lower material
rank than the other option (and the test stimulus).
Overestimation occurred when participants chose the
wrong option that had higher material rank than the
other option/test. (Note that the direction of material
dimension is arbitrarily defined such that for the
silver-glass stimuli, silver-like objects are lower ranks
and glass-like objects are higher ranks in the silver-glass
dimension.)

The bias in errors (i.e. errors can be biased toward
either underestimation or overestimation) may be
present in both simultaneous and successive matching
conditions. Bias in simultaneous matching is expected
if the discriminability of material properties is
not homogeneous (equidistant) along its material
dimension, or if some stimuli are more accessible to be
categorized as a specific type of material than others.
Such biases may well emerge in the simultaneous
matching condition because the material image
dataset has not strictly controlled for these perceptual
properties (Sawayama et al., 2019). Our interest
here is to examine whether the bias in simultaneous
matching, if it exists, will be amplified in the successive
matching condition. If participants encoded material

information categorically and did not retain detailed
visual information in working memory, then using such
an encoding strategy should result in increased bias in
errors, because it amplifies response bias that is intrinsic
to perception.

We counted each response type (correct response,
underestimation error, and overestimation error) in
each condition; then, the counts were averaged across
participants (Figure 2B). Visual inspection reveals
that, in most cases, both types of errors were more
or less equally likely, although, in some conditions,
either underestimation or overestimation errors were
more frequent. Importantly, these patterns were not
much different between simultaneous and successive
conditions. The statistical analysis confirmed these
insights. For each material dimension, the count data
(underestimation and overestimation) was fitted with
a binomial generalized linear model with the logit
link function (we confirmed that the choice of error
structure was appropriate to the data by the Pearson
dispersion parameters). The analysis of deviance (type
III tests and likelihood ratio test) revealed that in all
the experiments (i.e. material dimensions), the effect of
task was not significant: silver-glass, χ2 = 1.90, df =
1, p = 0.17; gold-yellow, χ2 = 2.99, df = 1, p = 0.083;
and opaque-translucent, χ2 = 1.03, df = 1, p = 0.31.
This result is compatible with the view that memory
demand did not amplify the bias in errors, in any
material dimensions. Note that in all the experiments,
the effect of illumination was significant: silver-glass,
χ2 = 13.1, df = 2, p = 0.0014; gold-yellow, χ2 = 8.18,
df = 2, p = 0.017; and opaque-translucent, χ2 = 17.0,
df = 2, p < 0.001. In fact, in the same-illumination
condition, overestimation is more frequent, whereas in
the other illumination conditions, both types of errors
were about equally likely on average.

Note that objects had different poses in the
same-illumination condition. Could the rotation
of objects have resulted in a change of material
appearance? For example, could a highlight appear
more pronounced in some poses than in others, which
led to the response bias in the same-illumination
condition? We conducted binomial GLM as described
above with a subset of the data (i.e. trials in the
same-illumination condition) to test for the effect of
pose on response bias. The results indicated that the
effect of pose was not significant: silver-glass, χ2 =
2.10, df = 1, p = 0.15; opaque-translucent, χ2 = 3.23,
df = 1, p = 0.072. (Result of the gold-yellow condition
is not shown because there were few bias counts in the
gold-yellow condition, which made the model fitting
unreliable.) Therefore, we concluded that the trend for
overestimation in the same-illumination condition was
not explained by object rotations.

In sum, the analysis of error bias type showed that
although some biases in errors were observed depending
on viewing conditions, the evidence that it was
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Estimation Categorization Miscellaneous No strategy

Simultaneous condition
Silver-glass 9 3 1 11
Gold-yellow 10 3 3 8
Opaque-translucent 14 0 1 9

Successive condition
Silver-glass 7 6 3 8
Gold-yellow 13 2 4 5
Opaque-translucent 19 1 3 1

Aggregated
Simultaneous condition 33 6 5 28
Successive condition 39 9 10 14

Table 1. Classification of self-reported task strategy.

affected by memory demand was weak. Such findings
suggest that participants used similar discrimination
criteria or strategy for material discrimination in both
simultaneous and successive matching conditions.
This point was further addressed with the analysis of
questionnaire data, as described below.

Self-reported task strategy

Self-reported task strategy data was collected via a
questionnaire. Participants were asked to report how
they performed the task for each matching condition
(simultaneous/successive). The reported strategies
were categorized into four types: estimation strategy,
categorization strategy, miscellaneous strategy, and
no strategy. The first two of these strategies were
identified based on the previous material perception
literature (Fleming, 2014; Fleming, 2017). A response
was categorized as the estimation strategy when it
referred to visual properties of materials or surface
qualities, with a focus on their intensity or subtle
differences between objects. The use of visual mental
imagery was also categorized as the estimation
strategy. The categorization strategy was identified
when a response referred to either categorization,
coarse/discrete discrimination, or the use of verbal
labeling. When a form was left blank or no specific
strategy was mentioned (e.g. “nothing especially”
or “just intuition”), it was categorized as the “no
strategy.” The remaining responses were categorized
as the miscellaneous strategy (e.g. “I made judgments
based on inferred weights of objects”; “I judged how
expensive or cheap the objects looked like”).

The results of the categorization of self-reported
strategies are summarized in Table 1. Estimation was the
most common strategy across materials and tasks (“no
strategy” is not considered here). In addition, in each
material dimension, the number of both estimation and
categorization strategy responses did not differ between

simultaneous and successive conditions (all p values
> 0.05 with the two sample Poisson exact test [Fay,
2010], conducted by using the “rateratio.test” package
in R [Fay, 2014]). Two key findings by the analysis of
subjective reports are: (1) most participants either used
the estimation strategy or did not rely on a specific
strategy, and the response of categorization strategy was
relatively rare, and (2) strategy choice was not affected
by task type (simultaneous/successive). Note that in
the aggregated data, the number of the no strategy
decreased from 28 in the simultaneous condition to 14
in the successive condition (p = 0.043). This result may
reflect that, although there is an increased need of some
strategy to perform memory-based matching, this need
did not result in using a specific type of strategy. In sum,
the categorical encoding was not an attractive strategy
to perform the successive matching task, suggesting that
participants did not merely encode material information
by category, but retained detailed visual information
of materials, in any material dimension conditions. We
then examined what image cues were relevant for the
discrimination of materials.

Image analysis

Sawayama et al. (2019) considered whether partici-
pants’ judgments in their oddity task could be predicted
by simple image statistics, such as themean of luminance
and color. They examined the relationship between the
sensitivity d′ and the mean color difference between
target and nontarget stimuli, and found some but not
large correlation between them. We conducted the same
analysis in our dataset. As in Sawayama et al. (2019),
the mean color difference �E*ab was defined as follows:

�E∗ab=
[
(L2

∗ − L1
∗)2 + (a2∗ − a1∗)2

+ (
b2∗ − b1∗)2]1/2
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Figure 4. Image analysis. (A) Correlation between the sensitivity d′ and the mean color difference �E*ab between test and distractor
stimuli. (B) Correlation coefficients of low-level image features with d′. Only statistically significant correlations are shown.

where L1
*, a1*, and b1* are the spatial mean CIELAB

values averaged over all possible target stimuli
(sample stimuli that had the same material property
with the test stimulus), whereas L2

*, a2*, and b2*
are those averaged over all possible nontarget
stimuli. Averaging was performed per combined
material/shape/illumination/discriminability condition
(yielding 81 groups or data points). Figure 4A shows
the result as scatter plots. There was a significant
relationship (Pearson correlation) between �E*ab
and mean d′ in both the simultaneous condition, r =
0.33, p = 0.003, and the successive condition, r = 0.44,
p < 0.001. The mean color difference explained only
10% to 20% of the d′ variance. These results suggest
that participants did not simply rely on mean color
differences to discriminate materials, which was also the
case in the oddity task used in Sawayama et al. (2019).

We also conducted a more elaborate image analysis
to examine how sensitivity d′ was related to low-level
image statistics, and examined if and how the
relationships depend on the material dimension and
memory demand. First, we extracted image features
(moment statistics) from bandpass-filtered images. The
original standard red, green, blue (sRGB) images in the
dataset were converted to the CIELAB color space,
and each color channel was decomposed into sub
band images of eight different spatial scales by using
the Butterworth bandpass filter (fourth-order) with

cutoff frequencies of 1 to 2, 2 to 4, 4 to 8, 8 to 16, 16
to 32, 32 to 64, 64 to 128, and 128 to 256 cycles/image.
For each color channel, the moment statistics of
the image (mean, SD, skewness, and kurtosis) were
calculated for each sub band. Note that pixels only
within the object region were used for the calculation of
moments, and which is the reason we included the first
moment (mean) in the analysis. (The first moment is
meaningless for uncropped bandpass-filtered images
because they are zero-centered.) Then, following the
same procedure as described above, the mean difference
in each moment statistic between target and nontarget
stimuli was correlated with sensitivity d′. The results are
shown in Figure 4B. The horizontal axis represents the
spatial frequency band, and the vertical axis represents
moment statistics for each color channel. (Note that
the correlation analysis was also conducted with the
original sRGB image, which is shown in the “pixel”
column.) Only the statistically significant correlations
(p < 0.05, multiple comparisons were corrected with
the Beyer-Hardwick [BH] method) appear in this figure.

Some interesting patterns are suggested in the plot.
Although the a-channel was predictive of sensitivity
mostly at lower frequencies, the L and b channels were
less dependent on frequency, and color channels were
generally less predictive for the opaque-translucent
discrimination, etc. However, we cannot commit
to making such detailed interpretations about the
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relationships between image features and d′ because
they are statistically unreliable: There were only 27 data
points in each cell; the correlation coefficient derived
from such small sample size is relatively inaccurate, and
even the sign of correlation can be reversed (Schönbrodt
& Perugini, 2013). Therefore, we will only consider the
holistic pattern of correlations instead of focusing on
the effects of individual image features.

First, in each material dimension, the set of
diagnostic image features was similar between
simultaneous and successive matching conditions.
To measure the association, we calculated Kendall’s
tau-b statistic, a measure of rank correlation, between
the correlation coefficient values of simultaneous and
successive conditions, by using the “KendallTauB”
function in the “DescTools” package in R (Signorell,
2020). The tau-b correlations were 0.75, 95% confidence
interval (CI) = [0.59, 0.90] for silver-glass, 0.64, 95% CI
= [0.50, 0.79] for gold-yellow, and 0.36, 95% CI = [0.11,
0.62] for opaque-translucent. High correlations indicate
the similarity of diagnostic image features between
simultaneous and successive matching conditions.
(Note that the tau-b had relatively higher uncertainty
for opaque-translucent dimension due to the small
number of significant correlations.) Second, diagnostic
image features were idiosyncratic to each material
dimension, that is, they were dissimilar between
different material dimensions. In fact, tau-b correlations
were close to zero and the 95% CIs crossed zero
when they were calculated for pairs with different
materials. Taken together, the image analysis revealed
idiosyncratic patterns of diagnostic low-level image
cues to each material discrimination and, importantly,
they were highly similar between simultaneous and
successive matching conditions.

General discussion

Working memory is a fundamental system for a
wide range of perceptual and cognitive activities (Tan,
Lallee, & Mandal, 2017), yet the function of working
memory in situations involving naturalistic stimuli
and tasks remains unclear (Orhan & Jacobs, 2014),
and material constancy is one such example. In three
experiments with the matching-to-sample paradigm,
we examined how material information is encoded in
and recalled from working memory. First, we found
that matching performance (measured by the sensitivity
metric d′) was comparable between simultaneous
and successive matching conditions when there was a
change in illumination context between objects. Second,
although there were some biases in matching errors
toward either underestimation or overestimation of
material properties depending on the viewing condition,
these biases were not affected by whether matching

was performed with or without a delay period.
Combined with the analysis of self-reported strategy,
our result suggests that participants performed both
simultaneous and successive matching tasks with similar
discrimination criteria or strategies; they did not merely
encoded material information by category, but retained
detailed visual information of materials to perform
the tasks. Finally, we explored the association between
low-level image features and matching performance.
Here, results suggested that whereas idiosyncratic sets
of diagnostic image features were observed for each
material dimension, the diagnostic features were highly
similar between simultaneous and successive matching
conditions in each material dimension. Taken together,
the set of results provide the basis for understanding
the role of working memory in material constancy.

The role of working memory in material
constancy

Previous studies have reported that constancy occurs
in working memory for glossiness (Tsuda & Saiki, 2018)
and long-term memory for color (Allred & Olkkonen,
2015; Jin & Shevell, 1996; Ling & Hurlbert, 2008;
Uchikawa, Kuriki, & Tone, 1998). The results of the
current study are in line with these observations, which
further suggests that material constancy is comparable
between simultaneous constancy (i.e. discounting of the
spatial change in illumination) and successive constancy
(i.e. discounting temporal changes in illumination),
at least in the current paradigm and stimuli. The
comparable performance between simultaneous and
successive matching may be surprising, considering that
it is generally assumed that visual working memory
representation is the noisy version of perception (e.g.
Bays, 2015; Sims, Jacobs, & Knill, 2012; van den Berg,
Shin, Chou, Georgea, & Ma, 2012). When perceptual
and memory matching performances were directly
compared using the same experimental procedure
and stimuli, studies revealed that working memory
representation was indeed less accurate and more
variable than perception (e.g. Bae et al., 2015; Tsuda &
Saiki, 2018; Tsuda & Saiki, 2019).

However, in a color constancy study by Allen and
Olkkonen (2015), a comparable precision of color
matching was reported between simultaneous and
successive matching conditions, where there was
a change in illumination context between sample
and test stimuli. The authors explained such results
by theorizing that working memory is a common
source of error in both simultaneous and successive
matching conditions. That is, participants looked
back and forth between stimuli in the simultaneous
matching condition, which likely involved working
memory. If both simultaneous and successive matching
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conditions shared the same processing bottleneck
(i.e. working memory capacity), it is unsurprising to
observe a comparable performance between the two
conditions. Other color constancy studies have likewise
documented the involvement of the memory system
in color constancy tasks (Jin & Shevell, 1996; Ling &
Hurlbert, 2008; Uchikawa, Kuriki, & Tone, 1998).

Our results on material constancy can be similarly
explained (i.e. working memory was a shared bottleneck
in both simultaneous and successive matching
conditions). In addition, more generally, it is possible
that if a task requires constancy against changes in
illumination, performance in simultaneous matching
will tend to be closer to that of successive matching.
(Although this would be dependent on how perceptual
matching is performed. If a participant is given
unlimited time for response, matching will be more
precise in simultaneous than in the successive matching
condition, as observed in a glossiness constancy study
by Tsuda & Saiki, 2018.) In tasks that use simple
visual features, such as color and orientation, in
which constancy is totally an irrelevant factor, then it
is no surprise to observe higher matching precision
in the simultaneous matching condition because
the exact image matching is possible. Likewise, in
the same-illumination condition in our task, where
constancy (against changes in illumination) is not
required, the simultaneous matching condition should
have (and actually) provided more accurate matching
performance than the successive matching condition.
(Note that the exact image matching was not possible
in the same-illumination condition in a precise sense
because of the variations in object’s pose. Nevertheless,
most low-level image properties would be preserved
regardless of this manipulation.)

Regarding the result of image analysis, we found
high similarities of diagnostic image features between
simultaneous and successive matching conditions.
According to the sensory recruitment theory of
working memory (D’Esposito & Postle, 2015; Scimeca,
Kiyonaga, & D’Esposito, 2018), the similarity may
reflect the shared neural and representational basis of
material information between perception and working
memory systems. However, from the perspective of
the discussion above, it may be more appropriate
to interpret the diagnostic cue similarity as merely
reflecting the involvement of working memory in both
simultaneous and successive matching conditions.
Although the image analysis provided some clues to
the representational format of material information,
it is still challenging to isolate the perceptual and
memory contributions to behavioral performance
data. Neuroimaging techniques such as functional
magnetic resonance imaging (fMRI) would facilitate
examining this issue more directly. Neurophysiological
evidence provides a view that visual perception and
categorization of materials are processed mainly

through a hierarchy of the ventral visual pathway
(Hiramatsu, Goda, & Komatsu, 2011; Komatsu &
Goda, 2018), and the involvement of the fusiform
face area was suggested for visual working memory of
material category information (Otsuka & Saiki, 2019).
In order to fully elucidate the underlying mechanism of
material constancy, future research should examine the
neural basis of the estimation of material properties,
how it differs from categorization, and whether the
sensory recruitment theory is applicable not only to
basic visual features, such as color but also to the
mid-level visual information, such as material properties
of objects.

Comparison to color/lightness constancy

The present study suggests that material constancy
is comparable between simultaneous and successive
matching conditions. However, previous studies on
color (Olkkonen and Allred, 2014) and lightness
perception (Olkkonen, Saarela, & Allred, 2016) have
shown that adding a short retention interval decreases
constancy. What caused the difference between this and
previous studies? Are the memory effects in material
perception different from that in color and lightness
perception? Previous studies measured the effects of
memory demand and illumination shift on perceived
color/lightness, and examined the independent effects
of memory and illumination on the appearance of
colors and lightness. Those studies reported that these
effects were not independent. Matching in the combined
memory load and illumination shift conditions elicited
a smaller bias than was predicted by the independent
(and additive) effects of memory and context biases.
This sub-additive property indicates less constancy
in the successive matching condition for color and
light (Olkkonen & Allred, 2014; Olkkonen, Saarela, &
Allred, 2016).

The task procedure and the performance measure
differ between those studies and the present one.
Nevertheless, we found that a similar analysis could be
conducted with our data. Previous studies used the point
of subjective equality (PSE) of psychometric function
as a measure of bias (appearance of color/lightness),
whereas we quantified bias (appearance of materials)
based on the frequency of under- and overestimation
errors, such that the possibility of bias was suggested
if either error type was more frequent than the other.
Therefore, we defined the bias index as follows:

Bias index = Poverestimation − Punderestimation,

where Poverestimation is the proportion of overestimation
error and Punderestimation is the proportion of
underestimation error. The index ranges between −1
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Figure 5. Analysis of constancy. (A) Bias index (see main text for the definition) was calculated for each viewing condition. The
three-digit numbers on the left represent the illumination conditions. Each digit corresponds to the illumination ID of the target
sample, the distractor sample, or the test object (e.g. “321” represents the condition in which the target sample had the illumination
#3, the distractor sample had the illumination #2, and the test objects had the illumination #1). (B) Histogram of additivity indices
calculated for each viewing condition. The vertical black line indicates the independence of memory and illumination biases. Vertical
dashed color lines show the mean index.

and 1, in which 0 indicated no response bias. Then, we
calculated the bias index for each condition following
the procedure by Olkkonen, Saarela, and Allred
(2016): baseline (simultaneous, same illumination),
context (simultaneous, near/far illumination),
memory (successive, same illumination), and joint
context-memory (successive, near/far illumination), as
shown in Figure 5A. Finally, the additivity index (the
difference between the observed and predicted bias
index) was calculated for each material × illumination
condition (Figure 5B).

Previous studies on color and lightness perception
have indicated a negative additivity index (i.e.
subadditivity). In contrast, our data showed neither
subadditivity nor super-additivity because the
distribution of the additivity index was centered
around zero in all the conditions, which is suggestive
of material constancy in working memory. It is
possible that these results cannot be taken at face value
because our task was not designed for these types of

analyses. Nevertheless, our results suggest an interesting
difference in constancy, and memory effects, among the
studies.

How can we explain the different results between
studies? The richness of visual information may be
relevant to constancy. The stimuli used in the previous
study (Olkkonen & Allred, 2014; Olkkonen, Saarela,
& Allred, 2016) were flat patches under artificial
illumination (spatially constant single color illuminant).
In contrast, the current study used objects with complex
3D shapes under real-world illumination. Material
perception research has shown the importance of
realistic viewing conditions for constancy. For example,
gloss perception was close to the veridical when seen
under complex real-world illumination, but not under
simple/artificial illumination (Dror, Willsky, & Adelson,
2004; Fleming, Dror, & Adelson, 2003). Moreover,
gloss perception deteriorated when the object shape
was changed from bumpy to uniform (Marlow &
Anderson, 2013).
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The findings of the current study suggest that
the visual system took advantage of the rich visual
information, or cues to the materials, in stimuli used in
the present study, which led to the preserved successive
constancy. This notion also suggests that it was not
visual attributes per se (color/lightness/materials), but
the naturalness of the stimuli and their complexity
(object shape and illumination) that accounted for
how the task affected constancy. Olkkonen, Saarela,
and Allred (2016) argued that successive lightness
constancy was weakened due to shifts in estimated
illuminants in memory. However, such shifts might
be weak under real-world illumination, because the
visual system has tacit knowledge of the statistics of
real-world illumination, or unsystematic, because of the
complexity of natural illumination.

Limitations and future directions

Before concluding, some limitations of the current
study and future directions should be mentioned.
The first limitation concerns the variation of material
constancy across material category and across time
scales. Although we have found that optical properties,
such as glossiness, translucency, and the type of
materials (metal/glass/plastic), are well remembered
and recalled in the presence of changes in illumination
context, it remains to be determined whether the
mechanical properties of materials, such as viscosity,
elasticity, and stiffness, are also retained well in
memory. How the dynamic aspects of material property
are represented in memory is currently unknown.
In addition, because we only considered material
constancy in working memory, the effect of time
scales remains unclear. Memory biases/distortions and
categorical effects are more likely to occur in long-term
memory (Persaud & Hemmer, 2016).

The second issue relates to the difference in the
representation of material information between
perception and memory; if such differences do exit,
they might be more effectively identified with some
higher-order image statistics because they can represent
more abstract information that might be more suited to
the modeling of memory representation. We focused
on low-level image features because they have been
frequently used for modeling material perception and
recognition (Motoyoshi, Nishida, Sharan, & Adelson,
2007; Nishida, 2019; Nishida & Shinya, 1998). Such
analysis can be easily applicable for any material
dimension, and therefore useful for comparing results
across different materials.

Finally, we would like to discuss the possible role
of categorization in material constancy. The present
results indicated that categorical coding was not a
dominant strategy for performing material matching
tasks. However, we found a possibly exciting result

of categorical effects in material perception. In the
“end point effect subsection” of the results section, we
described that matching performance was higher in the
end point-absent trial than in the end point-present
trial. We know that a categorical border between
two sample colors accelerates their discrimination
(Bornstein and Korda, 1984; Witzel, 2019; Witzel &
Gegenfurtner, 2018). This result can be explained by
the category border effect if end point objects (ranks 1
and 5) represent distinct categorical centers (e.g. silver
and glass) and the middle rank (rank 3) is close to the
categorical border of the two materials: Sample objects
in the end point-absent trial (i.e. ranks 2 and 4) cross the
categorical border and would be easier to discriminate.
Conversely, both samples in the end point-present trial
belong to the same material category (i.e. ranks 1 and 3
and ranks 3 and 5), and hence would not benefit from
the category effect. Further research is needed to test
these categorical effects in material perception.

Conclusions

In conclusion, we demonstrated comparable material
constancy between simultaneous and successive
matching conditions with diverse type of materials
(metals, glass, plastic, and translucent objects).
Combined with the self-reported task strategy and
the analysis of diagnostic image features for material
discrimination, converging evidence suggests that
the set of results are best explained by a shared
processing bottleneck (i.e. working memory) that
constrains both simultaneous and successive material
constancy. Although the role of the memory system has
been under-represented in recent material perception
literature, our study suggests that the capacity of
working memory should be considered in characterizing
the limits of material constancy.

Keywords: material perception, constancy, visual
working memory, illumination
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Footnote
1It would be more appropriate to vary object pose in the near-illumination
and the far-illumination conditions in the same way as in the
same-illumination condition to control for the effect of the pose across
experimental conditions. However, this was not possible due to the
structure of the image dataset: Variations in object pose was only
provided for the same-illumination stimuli. We could have made the object
pose constant in the same-illumination condition. However, it allows
participants to use the exact image matching strategy in the simultaneous
matching condition, which is inappropriate to investigate material (rather
than image) matching processes. To avoid this, we varied object pose in the
same-illumination condition. Moreover, this task setting is the intended
use of the stimuli by the authors of the material image dataset.
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